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RANDOM RESPONSE OF RECTANGULAR PANELS TO

THE PRESSURE FIELD BENEATH A TURBULENT

BOUNDARY LAYER IN SUBSONIC FLOWS

Wei J. Chyu and M. K. Au-Yang

Ames Research Center

SUMMARY

The response of a rectangular panel under the excitation of a turbulent boundary layer
with a zero longitudinal mean pressure gradient in a subsonic flow was studied in detail. The

method of normal mode was used together with the technique of spectral analysis. Simply

supported and clamped edge boundary conditions of a panel were assumed. The response of
the panel has been expressed in terms of displacement power spectral density. The mode number

and frequency in the response computation were extended to 7 and 3000 Hz, respectively.

The results of response computation assuming a clamped edge condition compare favorably

with existing experimental data with a clamped edge condition. The simply supported edge

condition, however, overestimates the response. The effect of flow velocity on the response is

to increase the higher frequency components of the power spectral density per unit excitation.

Charts of structural acceptances, which provide a framework for estimating the response of

other rectangular panels, are presented as functions of dimensionless frequency and boundary-
layer displacement thickness. Physical signiflcances of the structural acceptances are also discussed,

as regards the coincidence of the pressure and flexural waves and the probability of mode transition.

INTRODUCTION

The pressure fluctuations in regions of turbulent attached and separated boundary layers

and shock waves adjacent to the surface of aerospace vehicles cause structural vibrations throughout

atmospheric flight. The study of these vibrations is important in determining stress, fatigue, life

of structures, and noise transmission into the interior of the vehicle. Unfortunately, the analysis
of this type of vibration is complicated by the inherent random characteristics of the excitation

pressure fields, and the difficulty of analytically describing the vibration of a realistic structure.

For these reasons, early investigators of this problem considered only a hypothetical flow field
and made the simplifying assumption that the structure, almost invariably either a beam or a

rectangular panel, was infinitely large (refs. 1, 2, and 3). This assumption leads to a solution in

terms of the mean square displacement of the panel as a whole, but not as a function of location
on the panel.



In recentinvestigationsthe responseof finite-sizerectangularpanelsto the excitationof an
attachedturbulentboundarylayerhasbeenconsidered,but the panelswereassumedto besimply
supported(refs.4 to 6). This assumptionsimplifiesthe algebratremendously,permittingsolutions
to be expressedin closedforms.Although thesetheoreticalresultsagreebetterwith experiment
than thoseobtainedwith the infinite panelassumption,they tend to overestimatethe response
of a realisticpanel.Previousanalysisalsofails to predict thewavematchingaccuratelybetween
the flexuraI waveof a paneland the pressurewave.The estimationof this wavematchingis
important, particularly when the matchingoccursat one of the resonantfrequenciesof the
structure,andcausesa largestructuralresponse.With theadventof modernhighspeedcomputers,
a theoreticalanalysisof a finite rectangularpanelwith clampededgesunderthe excitation of a
turbulent boundary layer is now feasible. Analytical integration in closed forms is not necessary,

since numerical integration can be carried out with no algebraic simplification of the integrand.

This digital computer oriented approach has the following additional advantages over an analytical

approach: (1) The transparency of the problem is preserved, as often the physics of the problem
is lost among a great length of closed-form mathematical formulas; (2) future developments are
simplified, as the basic computer program can be modified to describe different flow fields and/or
different structures.

A research program has therefore been undertaken to improve the analytical capability, and
to develop practical computer programs for computing the displacement, velocity and stresses at
different locations on realistic panel structures in different flow fields, including attached and
separated flows at subsonic, transonic, and supersonic speeds. The first step in this process,
discussed in this report, has been to consider the response of a clamped edge panel to the excitation

of a subsonic attached turbulent boundary layer. The subsonic case was chosen because of the

availability of corresponding excitation data (ref. 7) and response measurements (ref. 6). A similar

analysis pertaining to attached and separated supersonic flow is in progress along with tests to

obtain corresponding structural response data. For this reason, a computer program has been

developed that is in modular form so that additions can be made to the program to accommodate

different flow and structural conditions without affecting the rest of the program. The computer

program pertaining to the analysis will be published separately.

METHOD OF ANALYSIS

Formulation of Displacement Power Spectral Density (DPSD)

The displacement w_,t) of a vibrating panel (fig. 1) is assumed to obey the classical thin
plate equation:

law + C_V + DV4w = p(.x., t) (1)

In the present analysis a uniform plate is considered. Hence/a and D are constants and independent
of _x. The above equation with c and p set equal to zero is the equation of free vibration of the

plate, of which the solutions _ba_) are called the natural normal modes of the plate. In the

subsequent analysis, it will be assumed that the damping is so small that the natural normal modes

and frequencies are not significantly changed. It is assumed further that w(_,t) can be expanded

in terms of _ka(x) as follows:

2



w(x, t) = _ qa(t) ¢JaQ-) (2)

Here qJa is assumed to be properly normalized:

Furthermore, it will be assumed that ffa(x) can be obtained by separation of coordinates:

Ca(x) = _m(X_ )qJn(X_ )

The term q_a(_) will be properly normalized if _Om(X_) and _n(X2 ) are normalized:

o _km(X l )_kn(x l )dx l = _ mn

35

o _m(X2)qJn(x2)dx2 = 6mn

It can be shown that, for a panel with simply supported edges

_ m_rxiqJm(Xi) = sin _i i-- 1, 2 (3)

For a panel with clamped edges, _m takes on different forms according to whether m is even
or odd:

(a) Ifm is odd,

_ m(Xi) - l [cos Tm(_-l) + km cosh Tm(_-½)l
Amq_

where 3'm are the roots of the equation

tan _ + tanh _-_= 0

and

(4)

Tm

sin _-
km =_

7m
sinh _--



(b) If m is even,

-1------_ [sin "rm(_-I) + km sinh 3'mt_- 1)] (5)¢_m(Xi) Am_-_

where "rm are the roots of the equation

7m _.mtanT -tanh =0

The orthogonality condition of the mode shape function can be used to find the normalization

factors A m.

Am= Zm

where

Zm = 7m + sin 7m + km 2 (sinh 7m + "rm) if m is odd

= 7m - sin "rm + km 2 (sinh 7m - _'m)

The numerical values of Am and _'m are:

Note that

and

m A m 7 m

1 0.7133 4.730040

2 .7068 7.853202

3 .7071 10.995608

4 .7071 14.137164

5 .7071 17.278758

6 .7071 20.420352

A m _- 0.7071 form>t 3

_'m-_76 +(m-6)_r form_, 7

The generalized coordinate qa(t) satisfies the Lagrange equation

mai_a(t) + Cadla(t) + Kaqa(t) = fa(t)

if m is even

!



where the generalized mass

rn_ = v f ¢j2 (x)d__x= U

in view of the orthonormality condition of ffa(_x).

Similarly,

Ca = c

Ke_ = ma_a 2

and

£

fa(t) = J p(x_,t)_a(y_)dx_ (6)

The above Lagrange equation is valid only for viscous damping. With structural damping the
corresponding Lagrange equation (ref. 6) takes the form:

m_i_a(t) + Ko_(l + iva')qa(t) = fa(t)

where va' is the loss factor corresponding to structural damping. For harmonic solution the above

equation can be cast into viscous damping form because q = (1/i_)(l. Therefore

maqa(t) + C'aeqa(t) + K_qa(t) = fa(t)

where C'_e = (Kava'/co) is the equivalent viscous damping coefficient. In practice, both viscous
and structural damping are present, and the Lagrange equation takes the final form

m_i_a(t) + C_eqa(t ) + Kaqa(t) = fa(t) (7)

where

_e = _e +

is the equivalent damping coefficient that takes into account the effect of both viscous and

structural damping. The viscous loss factor 6a' is usually defined by the following relation:

Hence,

Cae = Kava_..'+
¢..o

2Ko_8o_'

coot



If the combined damping is small, so that the PSD curve is sharply peaked at the natural fre-

quencies, only the frequencies around the neighborhood of the natural frequencies are of interest.
Therefore

and

¢o _-_ 60ot

Cote = Kol (280/ + rot')
60

Kotvot

Ca.)

where

Vt_ = POt' + 2_ot'

is the combined loss factor for both structural and viscous damping. 1 It is this combined loss

factor pot that is measured experimentally. The natural frequency 60a will be computed by the

method of Hearman (ref. 8).

The Fourier transform of the Lagrange equation (7) takes the form:

Oa(60 ) = Ha(60 )Fot(60 ) (8)

wherO

1 (9)
Hot(60) = mot [(60ot2 _ 602) + ivot60a= ]

Equations (2) and (8) together give

W(x,60) = Y_. Hot(60)Fot (60)qJot(x)

The displacement power spectral density is related to WT(g,60) by

SdfZ,60 ) = T-+"_ 71im,r WT,(X_,60)WT(X,60 )

(lO)

(II)

1The loss factor va takes into account the effect of hysteretic damping as well as viscous damping. The
latter includes the interaction of panel motion on the flow field within and outside the boundary layer, and
the effect of acoustical radiation into the interior of the structure (cavity), and into the exterior flow field.
The present state of art requires that rot be measured experimentally. Development of analytical and experi-
mental methods for the determination of loss factor are in progress.

2One can alternatively write Cae _"2Ko_Sr,/60awhere 28ct = 26a' + rot'. This will give H(60) = 1/mot[(60a2 - 602)

+ 2iSot60ot60]instead of equation (9). The two expressions are equal at 60= 60ot.

:!
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where W T is the truncated Fourier transform of w. Equations (7), (8), (10), and (11) together give

Sd(X_,¢o ) = 2_ Y]Ha(co)H/3*(co)_a(_x)_0/7(_x)

T-+_ T 41r -T -T
a(x_ ')q; #(_")p(x', t')p(x", t" )e -iw(t''-t')

• dt' dt" dx' dx"

The excitation cross correlation function Rp_',x__",t) and the cross spectral density Sp(x_',x_", co)
are defined by:

T

1 fTRp(x_',x_",r) = lim -_ p(_',t')p_",t' + r)dt'
--_ O0

(12)

S,,(x,x,,o) I fZ .... ,,or_' _" = R p(S_ ,x_ ,r )e dr (13)

Equations (12) and (13) can be used to derive the following expression for Sd:

S d(X_,¢o) = ASp(cO) y] qJa2 (x)lHc_(co)12Jcm(o)
Ol

+ 2ASp(_) _ Sa(x)C,#(x)Ha((.,.,)Hs*((.,.,)Ja/3(_) (14)

a,l_ counted once

where

Jail (¢'°) - ASp(w) Oa_')¢ _")Sp(x',x",_ )dx' dx"
(15)

is the familiar structural acceptance first introduced by Powell (ref. 9). Note that it is dimensionless.

An empirical formula for Sp(x',x",w) is given in appendix A, and in appendix B the structural

acceptance JaB is shown to be equal to the transition amplitude per unit area per unit excitation
between the a and _ mode of vibration.

Separation Into Real and Imaginary Parts and Factorization of Acceptance

Since Sp(x',x_.",_) is a complex function (see appendix A), the structural acceptance is
generally complex. Therefore it can be written as

7



,J_ = j_[_ - ik_ (16)

Furthermore, with the assumption that both the mode shape function and the excitation can be
factored into their respective coordinate components, the acceptances can be factored in the

following forms:

for homogeneous turbulence

• r °

ja_ = Inslmr

°p

ka_ = Ins kmr

�mr(W) =-_ fo fo $m(Xl')$r(X_")[PP(_l'O'_)[c°sb_x dx_' dx_"

., 1 :Q2 fo_2lns(_O) =-_2Jo ¢n(X2')¢s(X2")top(O$2,w)ldx2' dx2"

1 -_1 roostkrrtr(_O) = _T Jo d/m(X,')$r(xl ")lpp(_l,O, co)lsin b_, dxx' dxt"

Since the correlation coefficients pp(_ 2,0,w) and pp(O._2,eo) do not depend on the signs of _ and
_2, that is,

Op(_t ,0,_o) = pp(l_a 1,0,¢o)

ap(O,_2,_o) = 0p(0,[_2 [,w)

The above expressions for the acceptances can be simplified considerably if the region of integration
is divided into two triangles bounded by the straight lines x" = 0, x' = _ and x' = x";x' = 0,
x" = _ and x" = x' and the symmetry property of the mode shape function is used:

The final results are:

__2 f_,fx,"
i (.rnr._O)[,Jo Jo

=0

_Om (x) = (-1) m+l _Om(_ -x)

_ m(X')_ r(X")lp p(_ l ,0,w)lcos b_l dx _' dx _" if m + r even

if m + r odd (17)



_2 X.

=0

fokmr( _O) = -_1

n(X2 ')_ s(X2 ")lo p(O,_2 ,_ )ldx2' dx2"

i (Xl "

J qJm(X_")_r(Xl ")lpp(_l ,O,_o)lsin b_l dx_' dx_"
0

if n + s even I

if n + s odd

if rn + r odd

= 0 if m + r even

(18)

(19)

A physical argument leading to the second identity of the above equations will be given in

appendix B.

Two-Parameter Formulation of Acceptance

As formulated above, the acceptances depend on the panel dimension _, 92, the convection

velocity Uc, the frequency w, and the boundary-layer displacement thickness 6*. Previous

mathematical procedure requires recomputation of acceptances when any one of the above four

parameters is changed. Since this recomputation is extremely time consuming, the acceptances

have been reformulated as follows so that they do not depend on all of the above parameters.
Define:

_f = Yi' - Yi"

where

i=1,2

The acceptances then take the form:

I Yl

Jmr (F')=2 f f
0 0

=0

t?

'-' 2 / cos dYl' dYl
if m + r even /

/
if m + r odd ]

(20)

9



#t

0 1
-# _ , ?rSns(F2 2 n(Y2 )_ks(Y2 ,rh, 2' dy2 if n + s even

0 0

= 0 if n 4- s odd

#t

 mr,l ,,=2i'fy'
0 0

(21)

- '-- " (r/ _rFl • IrFli71 dy I , dYl #,_m(Yl )_r(Y, )Op ,,0,---_)lsin-----T--
if m + r odd )

(22)

= 0 if m + r even]
/

Here ffm(Y) are the normalized mode shape functions (eqs. (4) and (5)) with _ replaced by unity;

the pressure correlation coefficients Ion(_l, 0, lrF1/2)l, 10p(0, rh, 7rF2/2)1 are as defined in
appendix A. In equations (20) to (22),the acceptances now depend on only two parameters,
Fi and _i*. As long as Ai* remains constant, the same acceptance curves can be used to compute
the displacement power spectral density of different rectangular panels at different free-stream
velocities.

In terms of these new acceptances, the displacement power spectral density takes the form:

SdO',D = SpO0 Y] "_a_02)Ilia(2"m') 12/ram(F,)/'nn(F_)
a

+ 2Sp(f) E "_a_)_k'--_)i'ns(F2 )[gajmr(F1 ) + ha[3kmr(F' )]
av_-[3 mam_(g_ + h_t_)

(23)

where

ga# = (was - _2 ) (wO2 _ _o_ ) + VaV_COa2coO2 (24)

hal3 = _'a_a 2 (_(_2 _ co2 ) _ v#_ 2 (_a2 - _2 ) (25)

Acceptance charts based on equations (20) to (22) have been developed for the case of a
rectangular panel under excitation of a turbulent boundary layer in a subsonic flow with a zero-

longitudinal mean pressure gradient. The application of these charts in displacement PSD compu-
tation is described in appendix C.

RESULTS

The first part of the results from the present analysis includes the response of a clamped edge
panel to turbulent flow excitation applied on one side of the panel. The panel properties and flow
parameters used for an illustrative computation are given in table 1. The results are shown in

figures 2 to 9 along with some results of an identical panel with simply supported edges. Fig-

ures 2 to 6 show the structural acceptances for a boundary layer with ti*/_ = 0.04468 and

10



6"/_2 = 0.06499, for which the corresponding response data are available from Wilby's experi-
ment (ref. 6). Figure 6 shows the variation of acceptance with boundary-layer displacement
thickness. Figure 7 shows the calculated DPSD at the quarter- and midpoints of the panel,
together with the corresponding experimental results. Figure 8 depicts the perspective view of
the distribution of displacement PSD components at each mode on the panel. Figure 9(a) shows
the variation of the displacement PSD with longitudinal distance x_/_, evaluated at the lateral

position x2/_2 for which the PSD is a maximum for a given mode shown in figure 8. Similarly,

figure 9(b) shows the variation of the displacement PSD with lateral distance x2/£2 evaluated at

the longitudinal position x_/_ for which the PSD is a maximum. PSD results are obtained by

truncating the series in equation (23) after the seventh mode. It is found that decreasing the

mode number to five, or increasing the mode number to nine, has a negligible effect on the results.

The second part of the results (figs. 10 to 12) are charts of acceptances plotted against the

frequency parameter Fi for various Ai*. These charts, together with equation (23), enable the
displacement PSD of the response of a clamped edge panel to be computed for attached turbulent

boundary-layer excitations in subsonic flow.

DISCUSSION

Structural Acceptances

Coincidence of structural and pressure waves- The response of a panel to a spatial-temporal

correlated random pressure fluctuation caused by a turbulent boundary layer is characterized by

wave-length matchings between the pressure wave and the flexural waves of the panel; a condition

often referred to as "coincidence." It is this peak coincidence that gives rise to large response if it

occurs at one of the resonant frequencies of the structure. Coincidence frequencies are identified

by peaks of the longitudinal joint acceptance curves (fig. 2). They occur at F (or 4f_/Uc) =_ 2m

for both simply supported and clamped edge panels.

Figure 2 shows that the degree,of wavelength matching is highest in the first mode, and

decreases with increase of mode number for both boundary conditions. A simply supported panel

exhibits a higher degree of matching than a clamped edge panel. Since the joint terms (the first

sum on the right-hand side of eq. (23)) involving the joint acceptances account for almost all of

the Sd(ff, co) , it follows that a simply supported panel will undergo a larger mean square displace-
ment than a clamped edge panel.

In the case of a simply supported panel, the peaks occur at F < 2m because of the finiteness

of the panel. This means that the flexural wavelength of the panel is shorter than the matching

wavelength of the pressure wave. As the mode number is increased, the peaks approach F = 2m,

the matching condition of an infinite panel, because the panel appears to be infinite when
compared with the small wavelengths of the pressure waves at higher mode numbers.

When the panel edges are clamped, the panel boundary has two effects, one due to the

finiteness of the panel as stated above, and the other due to the rigidity of the clamped boundary,

For a nonresponsive region of a clamped-edge panel the effect appears to be small when compared

11



with the long pressure waves at the lower modes, and large when compared with the short pres-

sure waves at higher modes. Thus, the effect of the clamped edges is negligible at lower mode
matchings. The acceptance curves (fig. 2) show that the peaks at lower mode numbers occur at

F < 2m, because finiteness of the panel dominates. At higher mode numbers the opposite effect
of the nonresponsive part of the panel edges begins to dominate and the peaks shift to F > 2m.

It is significant that the peaks shift a half wavelength larger than 2m. Thus, the generally accepted

assumption that wave matching always occurs at F = 2m is not true for a finite panel.

Structural acceptances as transition amplitudes- Suppose an arbitrary external force is

applied on a structure initially vibrating in the _ normal mode. The structure will generally
transit into another mode (the a mode) of vibration, which can be a normal mode or a linear

superposition of normal modes of vibration. The probability of this transition is called the
transition amplitude between the # normal mode, and the a mode when the structure is excited

by the specific force in question. It is shown in appendix B that the structural acceptance J0_j3(c_)
is equal to the transition amplitude per unit area per unit excitation from the _ to the a mode of

vibration when the panel is excited by randomly fluctuating pressure forces.

In the case of two-dimensional panel vibration the transition amplitude is regarded as a

product of longitudinal and lateral acceptances. The longitudinal acceptance/mr - ikmr corresponds
to the transition amplitude between the ruth and the rth mode of vibration of a one--dimensional

structure (a beam) under the excitation of the longitudinally correlated component of the pressure
force or It)(_l, 0, co)le -ic° _1/Uc in equation (A 1). The in-phase part of this longitudinal component

of the pressure force gives rise to the real part/mr of the longitudinal acceptance and the out-of-

phase part to the imaginary part kmr. The lateral transition amplitude/_Ts corresponds to the
transition amplitude of another one-dimensional structure under the excitation of the laterally
correlated component of the pressure force or Ip(0,_ ,co)t.

Several interesting characteristics of the transition amplitudes are disclosed by the acceptances

in figures 3, 4, and 5. Figures 3 and 4 show that longitudinal transition amplitudes/ran and kmn
are typically maximum when m = n. In case m 4: n the magnitude decreases with increasing order
of the sum of m and n. This implies that the probability of the initial mode remaining in the same

mode is the highest and that there is less probability of transition to other modes. The figures also
show that the acceptances have maxima at F-_twice the lower mode number of m or n, indicating

that the maximum transitions occur also at coincidence frequencies of the lower mode numbers
of m or n.

.t

Figure 5 shows that the lateral acceptances in s are small compared with the longitudinal
acceptances in figures 3 and 4, particularly at high mode numbers. Since the pressure field is

less correlated in the lateral direction, it follows that the lateral acceptances should contribute

less to the panel response than longitudinal acceptances (see eq. (23)). The appearance of wave

matching in the lateral acceptances is not possible because of the lack of convection velocity in
the lateral direction.

Acceptance as a function of F and ix*- Typical acceptances as shown in figure 6 vary signi-
ficantly with A ] * at low Strouhal number F_, and their dependence on A 1* gradually disappears

as F_ increases. The reduction in dependency on A_* occurs because high values of Ft correspond

to high frequencies and short pressure wavelengths, and the boundary layer therefore appears to
be infinitely thick in comparison with the short pressure waves. This factor was also taken into

account when the empirical formulas for the correlation coefficients were derived as shown in

12



appendixA, where the correlation coefficients are independent of A l* at high frequencies. This

same variation of wavelength with F1 relative to A l* causes the acceptances for lower modes to

vary more significantly with A a* than those involving higher modes. This variation can be seen

by comparing typical acceptance J22 with JT_ in figures 6(a) and 6(b), respectively.

Structural Response

Displacement PSD as function of frequency- Figures 7(a) and 7(b) show the results of the

computed displacement power spectral density (DPSD) at the quarter point of the panel at

Mo_ = 0.3 and 0.5, and' their comparisons with Wilby's measurements (ref. 6). Results are shown
for both clamped edge and simply supported panels. The dimensions and material properties of

the panel are listed in table 1. Figure 7(c) shows the results of the calculated panel response at the

midpoint of the panel, where no experimental data are available for comparison.

The study of figure 7 discloses that the peaks of the response curve always occur at, or very
near, the natural frequencies. The envelope of the peaks in the spectra decays rapidly with fre-

quency to justify the normal mode approach used in the present analysis. The response compu-

tation based on the cIamped edge boundary condition (figs. 7(a) and 7(b)) agrees better with

Wilby's measurements (ref. 6) than with the computations based on the simply,supported boundary

condition. The results also show that the joint terms (the first sum of eq. (23)) account for almost
alJ of the contribution to DPSD at the peaks. The contribution of the cross terms (the second

sum of eq. (23)) to DPSD is completely negligible except at some valleys of the DPSD curve.
Powell (ref. 9) showed that because of the orthogonality condition of the mode shape functions,

the cross-term contribution to a uniformly loaded surface will be zero when averaged over the

entire surface. However, he also pointed out that the cross terms cannot be neglected if damping

is appreciable or if the force is applied to a localized area.

When the Mach number is changed from 0.3 to 0.5 (figs. 7(a) and 7(b), the overall shape of

the DPSD curve does not change, but the displacement per unit excitation increases at higher
frequencies. The corresponding rms displacement per unit pressure input increases by about

11 percent at the quarter point and 17 percent at the midpoint of the panel. This increase in

response is attributed to the increase in the spatial correlation of the pressure field at high fre-

quencies as the Mach number is increased. Since pressure excitation also increased with velocity

(,v/'p-_- _" 0.006 qoo), the rms displacement of the panel will increase, as a result of both the increase

in pressure excitation Sp(f) and the increase in DPSD per unit pressure excitation, Sd(Y,f)/Sp(f).

The computed DPSD at the midpoint of the panel (fig. 7(c)) does not have peaks at natural
frequencies, which correspond to antisymmetric modes, because the panel midpoint is a node

point for the antisymmetric modes.

Displacement PSD distribution on a panel- Computer programs capable of displaying the
perspective view of displacement PSD on a panel were also developed. The displacement PSD on

a panel is necessary information for the assessment of the distribution of stress. Typical results

given in figure 8 show the distribution of PSD components on a clamped edge panel at natural
frequencies corresponding to modes (1-1), (2-1), (1-2), (3-1), and (2-2). Figure 9 shows the
variation of maximum displacement PSD with longitudinal and lateral coordinates. Note that
when mode m or n > 1, the peaks of the PSD next to the panel edge do not occur at exactly

13



_/2m from the edge,asthey would in the caseof a simply supportedpanel.The fact that the
peaks of the PSD occur at distances greater than _/2m from the edge is due to the rigidity of the
panel at the clamped edge. Note also that when mode m or n > 1 and the mode number is odd

(for instance m = 3 in fig. 9(a)), the PSD in the middle region of the panel is symmetric, but the
PSD next to the panel edge is asymmetric about the respective peaks.

CONCLUSIONS

The study on the response of a rectangular panel under the excitation of a turbulent boundary
layer discloses the following:

1. The matching between the pressure wave and the flexural wave of a panel does not
occur exactly at even integer values of the reduced frequency F = 4f_/Uc, as it would when the

panel is infinite for two reasons; (a) the finiteness of the panel significantly affects the low fre-

quency matchings, and (b) the rigidity of the clamped boundary significantly affects the high
frequency matchings.

2. The structural acceptance Jo_ is equal to the probability of transition, or transition
amplitude, from the _ mode to a mode of vibration, per unit excitation power spectral density
per unit area of the panel, when the panel is excited by the random pressure. The longitudinal
transition amplitudes (/mn and kmn) exhibit a general behavior, being maximal when m = n.
When m 4: n, the magnitude decreases with increasing order of the sum of m and n. This decrease

implies that the probability of preserving the same mode is higher than the probability of transiting
to different modes.

3. An expression that depends only on the dimensionless frequency Fi and boundary
layer thickness Ai* can be derived for the structural acceptance. Corresponding acceptance
charts were therefore prepared which make possible a quick estimation of the response of any
rectangular panel to excitation of a turbulent boundary layer in subsonic flow with a zero

longitudinal mean gradient.

4. The lateral acceptances are small compared with the longitudinal acceptances. Since

pressure field is less correlated in the lateral direction, the lateral acceptances contribute less to
the panel response than longitudinal acceptances.

5. The response computation based on the clamped edge boundary condition of a panel

is in better agreement with the measurements than previous results obtained by investigators who
used a simply supported boundary condition in the acceptance calculation.

6. As the Mach number is increased within the subsonic range, the response of a panel is
also increased in its high frequency components of vibration. The increase is attributed to two

factors: the increase in the spatial correlation of the pressure field at high frequencies; and the
increase of the magnitude of pressure excitations.

14



7. The variationof boundary-layerthicknessaffectsonly the low frequencycomponent
of the responsethrough the structural acceptances,which vary significantlynearthe low fre-
quency,particularlywherethe wavematchingoccurs.

AmesResearchCenter
NationalAeronauticsandSpaceAdministration

Moffett Field,Calif.94035,July7, 1972
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APPENDIX A

RANDOM EXCITATION BY SURFACE PRESSURE FLUCTUATIONS

The pressure fluctuations that occur on a surface adjacent to a turbulent boundary layer

have been shown by many investigators (refs. 7 and 10 to 16) to be spatially and temporarily
correlated. For homogeneous turbulence, as attached flow, the cross spectral density of the

fluctuating pressure depends only on the separation distance and can be expressed in the following
form:

Sp(_ I ,_2 ,_o)

Sp(oo) = Ip(_l ,_2 ,co)le -i_'/Uc (A1)

where lpp(_, _, _o)1 is the cross correlation coefficient between two points separated by distances
of _ and _2 in the xl and x2 directions. Experimental data also show that the correlation

coefficient can be separated in coordinates as follows:

IPp(_l ,_2,eo)J = Ipp(_, ,0,eo)[ Ipp(O,_2 ,co)l (A2)

In the case of a turbulent boundary layer at a zero longitudinal pressure gradient in a subsonic

flow, empirical formulas have been constructed for Ipp(_l ,0,_o)[ and Ipp(0,_2 ,_)J based on Bull's
experimental data (ref. 7):

Pp t,Of F' =e --_1 2 if--TA1

= e "-°ts Ir/_ [/Al* lI--'_'"7rFz al * < kl

lop (0,rls ,_-_ 9 = e-'a 3n-'_--'_=F=[r/s I if In=t >- [9.1 log ('-@_a=*) + 5.45]A=*

= c + de "-a4 Irts l/As *
\

Insl < - [9.1 log 1rr-2 As*) + 5.45]A=*if
(2

where

al = 0.1

as = 0.037

a3 = 0.715

a4 = 0.547

c = 0.28

d = 0.72

kl = 0.37
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The convection velocity, Uc, in this mathematical model is given by,

Uc = (_, + K,:,e-°lsW6*/U'_')U_ (A3)

where

K, = 0.59

_2 = 0.30

as = 0.89
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APPENDIX B

ACCEPTANCE AS TRANSITION AMPLITUDES BETWEEN TWO NORMAL MODES

OF VIBRATION AND ITS SIGNIFICANCE IN PANEL VIBRATION

In view of the importance of acceptances in predicting structural response to random forces,

a physical meaning of acceptances is derived below. Suppose a structure is vibrating initially in
the _ normal mode. If an arbitrary external force is applied, the structure will in general transit

into another mode of vibration which can be a linear superposition of normal modes or a pure
normal mode. The probability of this transition is called the transition amplitude between the

normal mode and the final mode when the structure is excited by the specific force in question.

Since the final mode is, in general, a linear superposition of the normal modes, it can be expressed
as_] aa{3qJa, where aaB is the transition amplitude between the a and/3 normal mode.

ot

To show the relationship between the transition amplitude and the acceptance, a mathematical
formulation of the above discussion is necessary. In the language of linear algebra, the method of

normal mode analysis assumes that the normalized mode shape functions _a form an orthonormal

basis in a linear space, S, which is the space of all possible vibration modes of the structure. Any

mode of vibration is a vector in S and therefore can be expressed as a linear sum of _a" The
orthonormal condition of qJa can be expressed mathematically as:

(BI)

where the integration is over the entire structure, or in the present case, the area of the rectangular
panel. This suggests that the scalar product between two vectors A, B in S can be defined as:

(A tB) = Af A (£)B(x)d_x (B2)

In this linear space, a disturbance such as Sp(y.',x",_o )is described mathematically by a linear

operator OSp(:y.',x",_o ) in S with the property that if-A is a vector in S,

OSp(Y" "x'"w )A - -fA dx" Sp(x',x",_o )A(x") (B3)

in accordance with the definition of scalar product in equation (B2). By definition of 0 S , OsjDA• . P
is also m S. In particular, when A = ff_3(x), Or_ 42j3 is also in S. Therefore it can be expandedas
follows: up

OSp(:Y.',x",co)¢_3(x") = _]a_,#ff 3,(x')

18



In the case of a flat panel, each of a,#,'r contains two indices such as (1,1), (1,2)... (oo,oo). The

coefficients aa# can be obtained by forming the scalar product between _a and OSp(X',X",w)
as folIows,

ffsa(x')lOSp(X'.X",_)¢O(x")> = <_,_(x')l_a_,#qJ_t(x')>

a.r# <_o,(x')l _.t(x'))

= _ a"tt36_3'

(B4)

By definition of equations (B2) and (B3),

(tka_ )lOSp(£ ,x__,co)tp[j(x" )) = _ba(x )Sp(x ,x ,co)_kfl(x )dx dx"
(B5)

Comparing equations (B4) and (B5) with the definition of the acceptance Ja#,

Ja#(co )= _ f/d/ a(x_')Sp(x',x. ",co )_b#_")dx' dx"

the following identification can be established'

1

Ja# (c° ) = Sp(co )A a°_#

Thus the acceptance Ja# is just the transition amplitude per unit PSD of excitation per unit area
from the # to the a normal mode of vibration when the structure is excited by the disturbance

described by Sp(x',x",o).

In the case of two--dimensional panel vibration the transition amplitude is a product of

longitudinal and lateral acceptances (see e.quations (14) and (23)). The longitudinal acceptance

/mr--ikmr corresponds to the transition amplitude between the m and the r mode of vibration
of a one-dimensional structure under the excitation of the longitudinal correlated components

of the pressure force. The amplitude of a final mode r formed from initial modes 1, 2 .... n is

proportional to the following sum:

1l

_._ (Jmr + kmr)
m=l

where the first sum represents the transitions caused by the in-phase pressure fluctuations, and

the second sum by the out-of-phase pressure fluctuations. When any two of the above acceptances
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havethe samesign at a givenfrequency,the transition is suchthat they reinforceeachother,
givingrise to constructiveinterference.If they haveoppositesigns,they canceleachother,giving
riseto destructiveinterference.

During a transition, the parity of the modemust be conservedif the excitationhaseven
parity or symmetryin space,and must changeif theexcitationhasodd parity or antisymmetry
in space.Since/mr is proportionalto transitionamplitudecausedby the in-phasepressureforce,
which is symmetricin space(it cc_ntainsa cosinetermin eq.(20)),/mr mustbezeroif m + r is
odd. On the other hand, since kmr is proportional to the transition amplitude caused by the

out-of-phase pressure force, which is antisymmetric in space (it contains a sine term in eq. (22)),
.t

kmr must be zero if m + r is even. For the same reason lmr must be zero if m + r is odd. The
physical significance of equations (20) to (22) is thus shown in terms of the parity of modal
transition.
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APPENDIXC

APPLICATIONOF ACCEPTANCE CHARTS IN

DISPLACEMENT PSD COMPUTATION

Values of Jmr(F_ ), kmr(F_ ), dnd/'ns(Fz ) up to the seventh mode have been computed and
plotted in figures 10 through 12 for F up to 15.0, and Ai* ranging from 0.015 to 0.08 in incre-

ments of 0.01, for a clamped edge rectangular panel under boundary layer excitations. These
charts, together with equation (23), enable the displacement PSD be computed for a clamped
edge rectangular panel exposed to a subsonic freestream velocity. The procedure is to compute
the Uc first, using equation (A3). Then, knowing the dimensions of the panel and the boundary
layer displacement thickness, the two parameters Fi and Ai* can be computed. The corresponding
acceptances can be read from the charts and substituted into equation (23) with natural frequencies
and loss factors which can be determined experimentally or analytically. The method of linear
interpolation can be used if /xi* does not coincide exactly with one of the values at which the
acceptances are evaluated.
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TABLE1.- PANELPROPERTIESANDFLOWPARAMETERS

[Ref.6]

Mildsteelpanel

_1 0.1016 m (4 in.)

_2 0.06985 m (2.75 in.)

h 0.000381 m (0.015 in.)

E 0.2323×1012 N/m2 ( 33.7)<106 lb/in'2)

o 0.3

v 0.009

Density

7473 kg/m 3 (0.27 lb/in?)

Flow parameters

M_ 0.3 and 0.5

fi* 0.00454 m (0.179 in.)
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